
Field-dependent AC susceptibility of itinerant

ferromagnets

M D Vannette

R Prozorov

Ames Laboratory and Iowa State University, Dept. of Physics & Astronomy, Ames,
IA 50011

E-mail: vannette@iastate.edu

E-mail: prozorov@ameslab.gov

Abstract.
Whereas dc measurements of magnetic susceptibility, χ, fail to distinguish between

local and weak itinerant ferromagnets, radio-frequency (rf) measurements of χ in the
ferromagnetic state show dramatic differences between the two. We present sensitive
tunnel-diode resonator measurements of χ in the weak itinerant ferromagnet ZrZn2 at a
frequency of 23 MHz. Below Curie temperature, TC ≈ 26 K, the susceptibility is seen to
increase and pass through a broad maximum at approximately 15 K in zero applied dc
magnetic field. Application of a magnetic field reduces the amplitude of the maximum
and shifts it to lower temperatures. The existence and evolution this maximum with
applied field is not predicted by either the Stoner or self-consistent renormalized (SCR)
spin fluctuations theories. For temperatures below TC both theories derive a zero-field
limit expression for χ. We propose a semi-phenomenological model that considers
the effect of the internal field from the polarized fraction of the conduction band on
the remaining, unpolarized conduction band electrons. The developed model accurate
describes the experimental data.
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DC measurements of magnetic susceptibility fail to distinguish between local and

itinerant ferromagnets. A common method of determining χdc is measuring the magnetic

moment and then dividing by the applied field, H. However, this is only applicable

provided the magnetization is linear in H from H = 0 up to the measurement field.

For magnetically soft or small moment ferromagnets, this criterion may not be satisfied.

Perhaps a more careful method is to measure M in two slightly different magnetic fields

and then calculate ∆M/∆H as shown in Fig. 1. Further, due to limited sensitivity,

DC measurements are usually conducted in significant magnetic fields, on the order of

1-10 Oe. In exceptionally soft materials these fields may be sufficient to smear certain

zero-field features.

In itinerant systems the situation is even more complicated. In order to deduce the

size of a magnetic moment per ion, one has to be in a saturation regime by applying a

large field. However, this tells nothing about the magnitude of this moment in zero field

that, in itinerant systems, is field - dependent. Yet, even with a conventional definition,

observation of a magnetic moment that is a fraction of a Bohr magneton per ion is

not bulletproof evidence for the itinerant nature of magnetism. For example, the local-

moment metallic rare-earth compound CeAgSb2 [1] and the insulating titinate YTiO3

[2] both possess a fractional magnetic moment per ion. Possible explanations of such

fractional local moments could be a canted antiferromagnetic structure as may occur in

YTiO3 [3], or crystalline electric field effects as has been proposed for CeAgSb2 [4].

Unlike dc measurements, ac susceptibility can be measured in much lower magnetic

fields. It became a valuable technique in studying magnetic materials. However,

interpretation of the results, especially in itinerant systems is complicated. For example,

low frequency ac susceptibility measurements on the insulating two dimensional

ferromagnet K2CuF4 [5] is strikingly similar to that measured in palladium slightly

doped with manganese [6] as well as in an Fe-Ni-B-Si alloy [7]. While it is clear that the

insulating compound is a local moment, the nature of the latter two is open to debate.

It is suggested in these works that the similarities in the data is due to a combination

of demagnetization effects and domain wall motion.

In this contribution we report radio frequency temperature dependent ac

susceptibility of the well-studied commonly accepted itinerant ferromagnet ZrZn2,

and examine its evolution with an applied magnetic field. We then present a semi-

phenomenological model that describes our data. Low frequency ac susceptibility

measurements on ZrZn2 have been reported [8], however, as the focus of that work

was not the ferromagnetism of the compound, the only presented data is for T < 2 K.

Recently, it has been shown [9] [10] that rf measurements of ac magnetic

susceptibility, χac, seem to distinguish between local moment and itinerant

ferromagnetism. Further, in Ref. [9] an explanation ruling out the demagnetzation or

magnetic domains effects was presented. It is clear from Fig. 2 that the rf susceptibility

of the weak itinerant ferromagnet ZrZn2 [11] is distinctly different from that of the 4f

local moment CeAgSb2 [1]. The purpose of this work is to present an effective Weiss-type

model to describe the data derived from itinerant ferromagnets.
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The design and operation of a tunnel-diode resonator (TDR) are described in detail

elsewhere [12] [13] [14]. The device is built around a tunnel diode, a semiconducting

device with a voltage bias region of negative differential resistance. Biasing to this

voltage region allows the tunnel diode to drive an LC tank circuit at its natural resonant

frequency. In magnetic measurements, a sample is placed in the coil of the tank circuit

thereby changing the total inductance, and, hence, the tank circuit’s resonant frequency.

It can be shown [15] that the frequency shift of the tank circuit is directly proportional

to the magnetic susceptibility, χ, of the sample in the coil as

∆f

f0

≈ −1

2

Vs

Vc

4πχm. (1)

Here Vs and Vc are the volumes of the sample and coil, respectively, and χm is the

measured susceptibility of the sample. Careful design and construction allows one to

resolve changes in resonant frequency induced by the sample on the order of 1-10 mHz.

The resulting tuned circuit, operating at 10-20 MHz, gives frequency sensitivity on the

order of a few parts per billion. This translates to a typical sensitivity of 10−7 − 10−8

change in χ induced by temperature or magnetic field. Due to the operating frequency

the measured susceptibility is composed of two parts. The first is due to the magnetic

moments in the sample, and may be either para- or diamagnetic depending on the

material studied. The second is due to the screening of an rf field via the normal skin

effect in metals. This screening is a diamagnetic contribution and is a measure of changes

in resistivity [16].

Radio frequency susceptibility data presented herein were collected in a TDR

operating at 23 MHz mounted in a 4He cryostat. The design is similar to that presented

in Ref. [9]. The temperature of the sample can be varied from 3 to 100 K and a dc

magnetic field up to 2.5 T coaxial with the rf excitation field (∼ 20 mOe) can be

applied with a superconducting magnet. The magnet is mounted inside the vacuum can

of the cryostat resulting in no trapped magnetic field at the beginning of each run. As

the effects studied herein are completely suppressed by fields on the order of 500 Oe,

any such trapped magnetic field could affect the data. Single crystal samples were used

in this study. The CeAgSb2 sample was prepared as described in Ref. [1], while the

ZrZn2 sample was prepared as described in Ref. [17].

Figure 1 compares temperature dependent dc susceptibility for the local moment

CeAgSb2 with that for the itinerant ZrZn2 as measured in a Quantum Design MPMS-

5. Two different techniques were used to determine these susceptibilities. Panel (a)

shows the usual χdc where the magnetic moment is measured in a small applied field

(H = 20 Oe) and M/H is calculated. While this method is appropriate for temperatures

well above TC where magnetization is linearly dependent on field over a fairly large

field range, it should be expected to fail in the ferromagnetic state because M is not

necessarily linear in H all the way down to H = 0. Bearing this in mind, a delta

measurement of χdc was performed (results in panel (b)) as follows. Magnetic moment

versus temperature was measured first in a 17 Oe field and then in a 22 Oe field. The

difference in the resulting moment was divided by the 5 Oe difference in applied fields to
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Figure 1. (Color online) Comparison of normalized measurements of dc susceptibility
of the 4f local moment ferromagnetic CeAgSb2 (black circles, TC ≈ 9.8 K) and the
weak itinerant ferromagnet ZrZn2 (red squares, TC ≈ 27 K) on a reduced temperature
scale. Panel (a) is the conventional dc susceptibility, M/H. Panel (b) is the result
of dc delta measurements as explained in the text. Both sets of measurements were
carried out with Havg = 20 Oe. Normalization is relative to the 5 K value of M/H

and performed for each sample separately.

determine ∆M/∆H. The advantage of this method is that it only requires approximate

linearity in M(H) over the 5 Oe window defined by the upper and lower fields. Thus, it

can be expected to approximate χ = dM
dH

more closely. Obviously, a smaller H window

is more likely to conform to the linear M(H) approximation.

While the delta measurement results in a lower susceptibility in both samples,

both dc techniques produce quite similar χ(T ) curves. This is to be contrasted with the

results of zero field radio frequency susceptibility versus temperature as shown in Fig. 2.

Whereas the local moment system shows a sharp, well defined peak in χac at the Curie

temperature, the itinerant system exhibits a broad maximum well below TC .

Conventional theories of itinerant ferromagnetism fail to predict the behavior seen

in the TDR data of ZrZn2. The development of the Stoner theory [18] was driven by a

desire to understand how a fractional Bohr magneton magnetic moment could be created

in nickel. The failures of Stoner theory, i.e. Curie temperatures that are too high and
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Figure 2. (Color online) Radio frequency susceptibility of the weak itinerant
ferromagnet ZrZn2 (top) and the 4f local moment ferromagnet CeAgSb2 (bottom)
in zero applied field. TC marks the feature at the Curie temperature for each material.
The general decrease in the measured χ (above TC for ZrZn2, and below for CeAgSb2)
is caused by a decrease in resistivity. Note the different temperature scales in each
plot.

the lack of a Curie-Weiss susceptibility above TC , were impetus for the development of

the spin fluctuation theory of Moriya and Kawabata [19]. While spin fluctuation theory

does indeed predict a Curie-Weiss type paramagnetic state and largely correct the Curie

temperatures, neither it nor the Stoner theory adequately describe the broad maximum

seen in the rf data. Indeed, both theories derive a strictly zero field limit of χ just below

TC of the same form

χ(T < TC) = χ0

(
1−

(
T

TC

)n)−1

. (2)

The difference between the two theories is the value of n. For Stoner theory n = 2 while

for spin fluctuations n = 1 [20]. The Stoner theory does predict a nonzero χ at T = 0

and H = 0 [21], however there is no prescription for how the susceptibility should evolve

from TC to 0 K.

A zero field limit calculation, however, is not representative of a ferromagnetic

system below TC . As the system begins to order there is a non-zero field in the
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sample from the ordered moments themselves. In itinerant systems this mean field

should continue to increase as T decreases and the fraction of spin polarized conduction

electrons increases. The increase in the itinerant mean field may be expected to be more

dramatic than in a local moment mean field because in the former there are physically

more magnetic carriers as temperature decreases, while in the latter there is merely

less thermal randomization of the moment directions. To account for the self-field we

propose a modified Brillouin function for a spin-1/2 system in a magnetic field. We

choose a spin-1/2 system because in itinerant systems it is the single electron spin that

is of interest.

m∗(t, h) = m∗
0 tanh

h

1− tn
. (3)

In the above equation, t = T
T ∗ where T ∗ is a characteristic temperature not

necessarily equal to TC and h is a dimensionless field term. It should be noted that

this form does not represent the magnetization of the sample. Rather, m∗ may be taken

as some measure of the unpolarized fraction of the conduction band. Differentiating

with respect to h gives

χ(t, h) =
χ0

1− tn
cosh−2 h

1− tn
. (4)

In the limit h → 0, this reduces to Eq. 2 if T ∗ → TC , despite the fact that we are not

beginning with the proper form for the magnetization.

To account for the resistivity contribution to the measured susceptibility, data

collected in a dc field of 1 kOe were subtracted from lower field runs. This field was

sufficiently large to completely suppress the maximum in χac while being small enough

that it is not expected to result in a significant magnetoresistance.

Data fits to the model were attempted for various values of n. It was found that

n = 1, corresponding to the spin fluctuations theory, gave the best agreement. Figure 3

shows best fits of Eq. 4 to the TDR data for ZrZn2. The resulting values of the fitting

parameters are shown in Fig. 4. χ0 decreases with applied H. T ∗ is constant within the

errors and it is approximately equal to TC . The value of h is approximately constant up

to applied fields of about 125 Oe and thereafter grows monotonically as H is increased.

In weak itinerant ferromagnets, like ZrZn2, the susceptibility in the ferromagnetic

state is dominated by contributions from the polarized fraction of conduction electrons

and the unpolarized fraction. This second contribution comes from a band with a

large Stoner enhancement, so it should be expected to have a correspondingly large

susceptibility. We suggest that our model accounts for the behavior of the unpolarized,

fluctuating portion of the conduction band.

The operating frequency in this study is commensurate with domain-wall resonance

techniques [22]. However, in ZrZn2 dc magnetization measurements suggest that single

crystals are forced into a single domain in fields as small as 30 Oe [23] effectively ruling

out any domain wall motion.

In conclusion, we have presented rf susceptibility measurements on the weak

itinerant ferromagnet ZrZn2 in various applied dc fields. The zero field limit expressions
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Figure 3. (Color online) Comparison of data (points) and fits (solid lines) from the
model presented in Eq. 4 with n = 1. For clarity only every seventh data point is
shown. In all fits, R2 values were greater than 0.98.
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Figure 4. (Color online) Values of fitting parameters χ0, T ∗, and h (top to bottom)
for ZrZn2 single crystal TDR data as functions of applied field (Happ) derived from
Eq. 4. Errors were determined by individually varying the fit parameters until the R2

value dropped below 0.95.

for χ predicted by existing theories were shown to be insufficient to explain the data.

A Weiss-like model based on the assumption that the rf response of the sample in

the ferromagnetic state is dominated by the fluctuating, unpolarized fraction of the

conduction band was shown to fit the data quite well. It is hoped that this data will

spur theoretical effort in understanding the dynamic properties of the ferromagnetic

state of such systems.
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